Compact Rotary Actuator

Series CRQ2

Rack \& Pinion Style/Size: 10, 15, 20, 30, 40

Compact Rotary Actuator Rack \& Pinion Style/Size: 10, 15, 20, 30, 40

Compact Rotary Actuator Rack \& Pinion Style Series CRQ2

How to Order

Applicable Auto Switches/Refer to pages 761 to 809 for further information on auto switches.

						Load vo	Itage	Auto swit	ch model	Lead	wire	ngth	(m)		Applicable load	
$\stackrel{\otimes}{ }$	function	entry	응	(Output)	DC		AC	Perpendicular	In-line	$\begin{array}{\|c\|} \hline 0.5 \\ \text { (Nil) } \\ \hline \end{array}$	$\begin{gathered} \hline 1 \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { (L) } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 5 \\ (\mathrm{Z}) \\ \hline \end{array}$	connector		
		Grommet	Yes	3-wire (NPN)	24 V	5V,12V	-	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC
	-			3-wire (PNP)				M9PV	M9P	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12V		M9BV	M9B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Diagnostic indication (2-color)			3-wire (NPN)		5V,12V		M9NWV	M9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\begin{gathered} \text { IC } \\ \text { circuit } \end{gathered}$	
				3-wire (PNP)				M9PWV	M9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12V		M9BWV	M9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Water resistant (2-color)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NAV**	M9NA**	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				M9PAV**	M9PA**	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12V		M9BAV**	M9BA**	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
$\underset{\sim}{x}$		Grommet	Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	-	\bigcirc	-	-	IC circuit	-
				2-wire	24 V	12V	100 V	A93V	A93	\bigcirc	-	\bigcirc	-	-	-	Relay, PLC
			No				100 V or less	A90V	A90	\bigcirc	-	\bigcirc	-	-	IC circuit	

** Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

* Lead wire length symbols: $\quad 0.5 \mathrm{~m} \ldots .$. Nil (Example) M9NW Auto switches marked with "O" are made to order specification.
$1 \mathrm{~m}$. M (Example) M9NWM
$3 \mathrm{~m} \mathrm{L}$ (Example) M9NWL
$5 \mathrm{~m}$. Z (Example) M9NWZ

[^0]Refer to pages 796 and 797 for the details of solid state auto switch with pre-wired connector.

Specifications

JIS Symbol

Made to order Refer to pages 256 to 270 for details		
Symbol	Specifications/Content	Applicable shaft type
-	Shaft type variation	X, Y, Z, T, J, K
XA1 to XA24	Shaft pattern sequencing I	S, W
XA31 to XA59	Shaft pattern sequencing II	X, Y, Z, T, J, K
XC7	Reversed shaft	S, W, X, T, J
XC8 to XC11	Change of rotating range	$\begin{aligned} & \mathrm{S}, \mathrm{~W}, \mathrm{Y} \\ & \mathrm{X}^{*}, \mathrm{Z}^{*}, \mathrm{~T}^{*}, \\ & \mathrm{~J}^{*}, \mathrm{~K}^{*} \end{aligned}$
XC12 to XC15	Change of angle adjustable range (0° to 100°)	
XC16, XC17	Change of angle adjustable range $\left(90^{\circ}\right.$ to $\left.190^{\circ}\right)$	
XC18, XC19	Change of rotating range	
XC20, XC21	Change of angle adjustable range (90° to 190°)	
XC22	Without inner rubber bumper	$\begin{aligned} & \text { S, W, X, Y, Z, } \\ & \text { T, J, K } \end{aligned}$
XC30	Fluorine grease	
XC69	Fluororubber seal	
X6	Shaft and parallel key made of stainless steel	

* Among the symbols XC8 to XC21, only XC12 and XC16 are compatible with shaft types $\mathrm{X}, \mathrm{Z}, \mathrm{T}, \mathrm{J}$ and K.

Mass

Size	10	15	20	30	40
Fluid	Air (Non-lube)				
Max. operating pressure	0.7 MPa		1.0 MPa		
Min. operating pressure	0.15 MPa		0.1 MPa		
Ambient and fluid temperature	0° to $60^{\circ} \mathrm{C}$ (No freezing)				
Cushion	Rubber bumper		Not attached, Air cushion		
Angle adjustment range	Rotation end $\pm 5^{\circ}$				
Rotation	$90^{\circ}, 180^{\circ}, 360^{\circ}$				
Port size	M5 x 0.8		Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$		
Output (N-m)*	0.3	0.75	1.8	3.1	5.3

* Output under the operating pressure at 0.5 MPa . Refer to page 30 for further information.

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy				Stable operational rotation time adjustment range
	Allowable kinetic energy (J)			Cushion angle	
	Without cushion	Rubber bumper	With air cushion*		-
Rotation time $\left(\mathrm{s} / 90^{\circ}\right)$					
$\mathbf{1 0}$	-	0.00025	-	-	-
$\mathbf{1 5}$	-	0.00039	-	0.2 to 0.7	
$\mathbf{2 0}$	0.025	-	0.12	40°	0.2 to 0.7
$\mathbf{3 0}$	0.048	-	0.25	40°	0.2 to 1
$\mathbf{4 0}$	0.081	-	0.4	40°	0.2 to 1

CRB2
CBBU2
CRB1
MSU
CRJ
CRA1

* Allowable kinetic energy for the bumper equipped type

Maximum absorbed energy under proper adjustment of the cushion needles.
If operated where the kinetic energy exceeds the allowable value, this may cause damage to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

Size	(g)		
	90°	180°	360°
$\mathbf{1 0}$	120	150	200
$\mathbf{1 5}$	220	270	380
$\mathbf{2 0}$	600	700	1000
$\mathbf{3 0}$	900	1100	1510
$\mathbf{4 0}$	1400	1600	2280

* Excluding the mass of auto switch.

\triangle Precautions

r--sure to read before handling.
Refer to front matters 38 and 39 for Safety Instructions and pages 4 to 13 for Rotary Actuator and Auto Switch I Precautions.

Caution

(1) The angle adjusting screw (angle adjustment bolt) is set at random within the adjustable rotating range. Therefore, it must be readjusted to obtain the angle that suits your application.

Series CRQ2

Construction

Basic style
Size 10/15

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Cover	Aluminum alloy	Electroless Nickel Plated
$\mathbf{3}$	Plate	Aluminum alloy	Chromated
$\mathbf{4}$	End cover	Aluminum alloy	Electroless Nickel Plated
$\mathbf{5}$	Piston	Stainless steel	
$\mathbf{6}$	Shaft	Stainless steel	Size: 10,15
		Chrome molybdenum steel	Size: 20, 30, 40
$\mathbf{7}$	Seal retainer	Aluminum alloy	Chromated
$\mathbf{8}$	Bearing retainer	Aluminum alloy	Anodized
$\mathbf{9}$	Wearing	Resin	
$\mathbf{1 0}$	Hexagon socket head cap screw	Stainless steel	
$\mathbf{1 1}$	Hexagon nut with flange	Steel wire	Electroless Nickel Plated
$\mathbf{1 2}$	Cross recessed No. $\mathbf{0}$ screw	Steel wire	Zinc chromated
$\mathbf{1 3}$	Cross recessed No. 0 screw	Steel wire	Size: 10,15
	Cross recessed screw		Size: $20,30,40$ Nickel plated

Basic style

Size 20/30/40

Component Parts

No.	Description	Material	Note
$\mathbf{1 4}$	Hexagon socket head set screw	Chrome molybdenum steel	Electroless Nickel Plated
$\mathbf{1 5}$	Bearing	Bearing steel	
$\mathbf{1 6}$	Parallel key	Carbon steel	Size: $20,30,40$ only
$\mathbf{1 7}$	Steel ball	Stainless steel	Size: $20,30,40$ only
$\mathbf{1 8}$	Type CS retaining ring	Stainless steel	
$\mathbf{1 9}$	Seal	NBR	
$\mathbf{2 0}$	Gasket	NBR	
$\mathbf{2 1}$	Piston seal	NBR	
$\mathbf{2 2}$	Cushion seal	Rubber material	Size: $20,30,40$ only with cushion
$\mathbf{2 3}$	Seal washer	NBR	
$\mathbf{2 4}$	Magnet	-	With auto switch only
$\mathbf{2 5}$	Cushion valve assembly		Size: $20,30,40$ with cushion only
$\mathbf{2 6}$	Cushion pad	Rubber material	Size: 10,15

Replacement Parts

Description	Part no.				
	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
Seal kit	$\mathrm{P} 473010-1$	$\mathrm{P} 473020-1$	$\mathrm{P} 473030-1$	$\mathrm{P} 473040-1$	$\mathrm{P} 473050-1$

A grease pack (10 g) is included. When you need a grease pack only, order with the following part number.
Grease pack part no: GR-S-010 (10g)

-	No.	Description	Qty.	Note
Applicable parts	19	Seal	1	
	20	Gasket for cover	2	Size: 10, 15
		Gasket for endcover	1	
		Gasket	4	Size: 20, 30, 40
	21	Piston seal	4	
	23	Seal washer	2	

[^1]With auto switch
Size 10/15

With cushion
Size 20/30/40

With auto switch Size 20/30/40

With auto switch and cushion Size 20/30/40

Series CRQ2

Dimensions

Size 10/15

With double shaft

Size	Rotating angle	A	AU*	B	BA	BB	BC	BD	BU	$\underset{\text { (g6) }}{\text { D }}$	$\begin{gathered} \text { DD } \\ \text { (h9) } \end{gathered}$	H
10	$90^{\circ}, 180^{\circ}, 360^{\circ}$	42	(8.5)	29	8.5	17	6.7	2.2	16.7	5	12	18
15	$90^{\circ}, 180^{\circ}, 360^{\circ}$	53	(9.5)	31	9	26.4	10.6	-	23.1	6	14	20

Size	Rotating angle	W	Q	S	US	UW	ab	M	TA	TC	TD
10	90°	4.5	17	56	35	44	6	9	15.5	8	15.4
	180°			69							
	360°			97							
15	90°	5.5	20	65	40	50	7	10	16	9	17.6
	180°			82							
	360°			116							

* AU dimension is not the dimension at the time of shipment,

S: Upper 90°, Middle 180°, Lower 360° since its dimension is for adjustment parts.

Dimensions

Size 20/30/40

With double shaft

Size	Rotating angle	A	AU*	B	BA	BB	BC	BD	BE	BU	CA	CB	$\underset{\text { (g6) }}{\text { D }}$	$\begin{gathered} \text { DD } \\ \text { (h9) } \end{gathered}$	F	H	J	JA	JB
20	$90^{\circ}, 180^{\circ}, 360^{\circ}$	63	(11)	50	14	34	14.5	-	-	30.4	7	4.7	10	25	2.5	30	M 8×1.25	11	6.5
30	$90^{\circ}, 180^{\circ}, 360^{\circ}$	69	(11)	68	14	39	16.5	49	16	34.7	8.1	4.9	12	30	3	32	M10 $\times 1.5$	14	8.5
40	$90^{\circ}, 180^{\circ}, 360^{\circ}$	78	(13)	76	16	47	18.5	55	16	40.4	8.3	5.2	15	32	3	36	M10 $\times 1.5$	14	8.6

Size	Rotating angle	JJ	K	Q	S	W	Key dimensions		US	TA	TB	TC	TD	$\begin{gathered} \text { TF } \\ \text { (H9) } \end{gathered}$	$\begin{gathered} \text { TG } \\ \text { (H9) } \end{gathered}$	TL	UW	G	M	N	L
							b	1													
20	90°	-	3	29	104	11.5	$4_{-0.03}^{0}$	20	59	24.5	1	13.5	27	4	4	2.5	74	$8_{-0.1}^{0}$	15	11	$9.6{ }_{-0.1}^{0}$
	180°				130																
	360°				180																
30	90°	$\begin{aligned} & \text { M5 } \times 0.8 \\ & \text { depth } 6 \end{aligned}$	4	33	122	13.5	$4_{-0.03}^{0}$	20	65	27	2	19	36	4	4	2.5	83	$10_{-0.1}^{0}$	18	13	$11.4{ }_{-0.1}^{0}$
	180°				153																
	360°				216																
40	90°	M6 x 1 depth 7	5	37	139	17	$5_{-0.03}^{0}$	25	73	32.5	2	20	39.5	5	5	3.5	93	$11{ }_{-0,1}^{0}$	20	15	$14 \stackrel{0}{-0.1}$
	180°				177																
	360°				253																

[^2]
Series CRQ2

Rotation Range

When pressurized from the port indicated by the arrow, the shaft will rotate in a clockwise direction.

Rotating angle: 90°

Rotating angle: 180°

Rotating angle: 360°

Compact Rotary Actuator Rack \& Pinion Style

Unit Used as Flange Mount

The L dimensions of this unit are shown in the table below. When hexagon socket head cap bolt of the JIS standard is used, the head of the bolt will recess into the groove of actuator.

Size	\mathbf{L}	Screw
$\mathbf{1 0}$	13	M4
$\mathbf{1 5}$	16	M4
$\mathbf{2 0}$	22.5	M6
$\mathbf{3 0}$	24.5	M8
$\mathbf{4 0}$	28.5	M8

Auto Switch Proper Mounting Position at Rotation End

Size	Rotating angle	Solid state switch				Reed switch			
		A	B	$\begin{gathered} \text { Operating } \\ \text { angle } \\ (\theta \mathrm{m}) \end{gathered}$	$\left.\begin{gathered} \text { Hystere-- } \\ \text { sisgle } \end{gathered} \right\rvert\,$	A	B	$\begin{gathered} \text { Operating } \\ \text { angle } \\ (\theta \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { Hystere- } \\ \text { sis } \\ \text { angle } \end{gathered}$
10	90°	19	25.5	61°	5°	15	21.5	63°	12°
	180°	22	35			18	31		
	360°	29	56.5			25	52.5		
15	90°	22.5	31	47°	4°	18.5	27	52°	9°
	180°	26.5	43.5			22.5	39.5		
	360°	34.5	68.5			30.5	64.5		
20	90°	40	52.5	40°	4°	36	48.5	41°	9°
	180°	46	71.5			42	67.5		
	360°	59.5	110			55.5	106		
30	90°	47	63	29°	2°	43	59	32°	7°
	180°	55	86			51	82		
	360°	66	129.5			62	125.5		
40	90°	54	73	24°	2°	50	69	24°	5°
	180°	63.5	101.5			59.5	97.5		
	360°	76.5	156			72.5	152		

Operating angle $\theta \mathrm{m}$: The value of the individual switch's movement range Lm as represented by an angle.
Hysteresis angle: Value of the switch's hysteresis as represented by an angle.

Note) Since the above values are only provided as a guideline, they are not guaranteed. In the actual setting, adjust them after confirming the auto switch performance.

Series CRQ2

1 Shaft Type Variation, Four Chamfers (Size 20/30/40)
Shaft Type: X, Z

\mathbf{X}	Single shaft with four chamfers
\mathbf{Z}	Double shaft with four chamfers

Specifications

Fluid	Air (Non-lube)
Applicable shaft type	Single w/ four chamfers (X), Double w/ four chamfers (Z)
Applicable size	$20,30,40$
Max. operating pressure	1.0 MPa
Min. operating pressure	0.1 MPa
Cushion	Not attached, Air cushion
Rotation	80° to $100^{\circ}, 170^{\circ}$ to $190^{\circ}, 350^{\circ}$ to 370°
Port size	Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$
Auto switch	Mountable

Dimensions

2 Shaft Type Variation, Double Shaft With Key (Size 20/30/40)
Shaft Type: Y

Dimensions

Specifications

Fluid	Air (Non-lube)
Applicable shaft type	Double shaft with key (Y)
Applicable size	$20,30,40$
Max. operating pressure	1.0 MPa
Min. operating pressure	0.1 MPa
Cushion	Not attached, Air cushion
Rotating angle	80° to $100^{\circ}, 170^{\circ}$ to $190^{\circ}, 350^{\circ}$ to 370°
Port size	Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$
Auto switch	Mountable

3 Shaft Type Variation/Without Keyway
Shaft Type: T, J, K

Specifications

Fluid	Air (Non-lube)	
Applicable shaft type	Single round shaft (T), Double shaft (J), Double round shaft (K)	
Applicable size	10,15	$20,30,40$
Max. operating pressure	0.7 MPa	1.0 MPa
Min. operating pressure	0.15 MPa	0.1 MPa
Cushion	Rubber bumper	Not attached, Air cushion
Rotating angle	80° to $100^{\circ}, 170^{\circ}$ to $190^{\circ}, 350^{\circ}$ to 370°	
Port size	M5 $\times 0.8$	
Auto switch $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$		

Dimensions

Series CRQ2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA1 to -XA24: Shaft Pattern Sequencing I
Shaft pattern sequencing is dealt with a simple made-to-order system. (Refer to front matter 33.) Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I
-XA1 to XA24
Applicable shaft type: S, w

How to Order

Chart 1. Combination between -XA \square and -XA \square (S, W shaft)

Combination Chart of Made to Order

Chart 2. Combination between -XA \square and -XC \square (Made to Order/ Details of -XC \square, refer to page 266.)

Symbol	Description	Applicable size	$\begin{gathered} \hline \text { Combination } \\ \hline \text { XA1 to XA24 } \end{gathered}$	Symbol	Description	Applicable size	$\begin{gathered} \hline \text { Combination } \\ \hline \text { XA1 to XA24 } \end{gathered}$	
XC 7	Reversed shaft	$\begin{gathered} 10,15 \\ 20,30,40 \end{gathered}$	-	XC18		20, 30, 40	\bigcirc	
XC 8	Change of rotating range		\bigcirc	XC19	Change of rotating range		\bigcirc	
XC 9			\bigcirc	XC20	Change in angle adjustable		\bigcirc	
XC10			\bigcirc	XC21	range 90° to 190°		\bigcirc	
XC11			\bigcirc	XC22	Without inner rubber bumper	10, 15	\bigcirc	
XC12	Change in angle adjustable range 0° to 100°		-	XC30	Fluorine grease	10, 15, 20, 30, 40	\bigcirc	
XC13			\bigcirc	XC69	Fluororubber seal	10, 15, 20, 30, 40	-	
XC14			\bigcirc	* Chart 5. Refer to page 266 for combination available between -XC \square and -XC \square.				
XC15			-					
XC16	Change in angle adjustable range 90° to 190°		-					
XC17			\bigcirc					

Additional Reminders

1. Enter the dimensions within a range that allows for additional machining.
2. SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads.
M3 x 0.5, M4 x 0.7, M5 x 0.8
M6 x 1
5. Enter the desired figures in the [---] portion of the diagram.
6. XA1 to XA24 are the standard products that have been additionally machined.
7. Chamfer face of the parts machining additionally is C0.5.

Symbol: A3

The long shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for
dimension X.)

- Applicable shaft types: S, W

Size	X	L1 max	Q1
$\mathbf{1 0}$	9 to 18	$X-4$	M5
$\mathbf{1 5}$	10 to 20	$X-4$	M6

Symbol: A6

The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
(If not specifying dimension C 2 , indicate "*" instead.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

size (Example) For M3: L1 $=6$
- Applicable shaft types: S, W

Size 10, 15

(mm)

(mm)	
Size	Q1
$\mathbf{1 0}$	M 3
$\mathbf{1 5}$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{2 0}$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{3 0}$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$
$\mathbf{4 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$

Symbol: A4

The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W

			(mm)
Size	Y	L2 max	Q2
$\mathbf{1 0}$	7 to 9	$\mathrm{Y}-2$	M 5
$\mathbf{1 5}$	8 to 10	$\mathrm{Y}-3$	M 6

Symbol: $\boldsymbol{A} \mathbf{7}$

The long shaft can be further shortened by machining it into a stepped round shaft with male threads. (If shortening the shaft is not required, indicate "*" for dimension X.)
(If not specifying dimension C 1 , indicate "*" instead.)

- Applicable shaft types: S, W

Symbol: A2

Machine female threads into the short shaft.
The maximum dimension L2 is, as a rule, twice the thread size. (Example) For M4: L2 = 8

- Applicable shaft types: S, W

The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)
(If not specifying dimension C 1 , indicate "*" instead.)

- Applicable shaft types: S, W
- Equal dimensions are indicated by the same marker.

	(mm)		
Size	X	L1 max	D1
$\mathbf{1 0}$	3 to 18	$X-2$	$\varnothing 3.5$ to $\varnothing 4.9$
15	3 to 20	$X-2$	$\varnothing 3.5$ to $\varnothing 5.9$

Symbol: A8

The short shaft can be further shortened by machining it into a stepped round shaft with male threads. (If shortening the shaft is not required, indicate "*" for dimension Y.)
(If not specifying dimension C 2 , indicate "*" instead.)

- Applicable shaft type: W

-XA1 to -XA24: Shaft Pattern Sequencing I

Shaft pattern sequencing is dealt with a simple made-to-order system. (Refer to front matter 33.)
Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

Symbol: A14

A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter

- The maximum dimension L 1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft types: S, W

Size 10, 15

Size 10, 15			Size 20, 30, 40 (mm)		
$\mathrm{Thread}^{\text {Size }}$	10	15	20	30	40
M3 $\times 0.5$	$\boxed{6} .5$	¢2.5	ø2.5	-	-
M4 $\times 0.7$	-	¢3.3	¢3.3	$\varnothing 3.3$	-
M5 $\times 0.8$	-	-	-	ø4.2	${ }^{\circ} 4.2$
M6 $\times 1$	-	-	-	-	$\varnothing 5$

Symbol: A9

The long shaft can be further shortened by changing the length of the standard chamfer on the long shaft side. (If shortening the shaft is not required, indicate " $*$ " for dimension X.)

- Applicable shaft types: S, W

Symbol: A12

The short shaft can be further shortened by machining a double-sided chamfer on to it.

- Since L2 is a standard chamfer, dimension E2 is 0.5 or more.
(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the $L 2$ and Y dimensions.) - Applicable shaft type- W

Symbol: A15

A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.
-The maximum dimension L2 is, as a rule, twice the
thread size. (Example) For M4: L2 $=8$

- Applicable shaft types; S, W

Symbol: A10

The short shaft can be further shortened by changing the length of the standard chamfer (If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

Shaft with through-hole
Minimum machining diameter for d1 is 0.1 .

- Applicable shaft types: S, W

Size 10, 15

Size 20, 30, 40

Symbol: A16

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes

- The maximum dimension L 1 is, as a rule, twice the thread
size. (Example) For M5: L1 = 10
- Applicable shaft types: S, W
- Equal dimensions are indicated by the same marker. $\frac{-1}{-}$

-XA9 to XA24

the long end and the short end of the shaft)
(If shortening the shaft is not required, indicate "*" for
dimension X and Y.)

- Applicable shaft types: S, W

	(mm)	
Size	X	\mathbf{Y}
$\mathbf{1 0}$	2 to 10	1 to 17
$\mathbf{1 5}$	2 to 11	1 to 19
$\mathbf{2 0}$	2.5 to 16.5	16 to 28.5
$\mathbf{3 0}$	3 to 20	16 to 30
$\mathbf{4 0}$	3 to 22	16.5 to 34

Symbol: A23

The long shaft can be further shortened by machining
right-angle double-sided chamfer onto it.

- Since L1 is a standard chamfer, dimension E1 is 0.5 or more.
(If altering the standard chamfer and shortening th shaft are not required, indicate "*" for both the L1 and X dimensions.)

			(mm)
Size	X	L1	L3max
10	8 to 18	$\{10-(18-X)\}$ to $(X-2)$	$X-2$
15	10 to 20	$\{10-(20-X)\}$ to $(X-2)$	$X-2$

The long shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer. (If shortening the shaft is not required, indicate "*" for dimension X.)(If not specifying dimension C1, indicate "*" instead.)

- Applicable shaft types: S, W
- Equal dimensions are indicated by the same marker.

	(mm)			
Size	X	L1 max	L3	D1
$\mathbf{1 0}$	5 to 18	X -3.5	L1 +1.5	$\varnothing 3.5$ to $\varnothing 4.9$
15	5.5 to 20	X -4	L1 +2	$\varnothing 3.5$ to $\varnothing 5.9$

Symbol: A24

Double key
Keys and keyways are machined at 180° from the standard position.

- Applicable shaft types: S, W
- Equal dimensions are indicated by the same marker.

 dimension Y.)
(If not specifying dimension C 2 , indicate "*" instead.)

Shaft pattern sequencing is dealt with a simple made-to-order system. (Refer to front matter 33.) Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II

Applicable shaft type: X, Y, Z, T, J and K

How to Order

-XA31 to XA59

Combination Chart of Simple Specials for Tip End Shape
Chart 3. Combination between -XA \square and -XA \square (X, Y, Z, T, J, K shafts)

Symbol	Description	Top port		Shaft type						$\begin{array}{\|c} \hline \begin{array}{c} \text { Applicable } \\ \text { size } \end{array} \\ \hline \end{array}$	Combination												
		Upper	Lower	J	K	T	X	Y	Z														
XA31	Female thread at the end	-	-	-	-	-	-	\bigcirc	-	20, 30, 40	XA31		XA33	XA34			* Corresponding shafts type available for combination						
XA32	Female thread at the end	-	\bigcirc	-	-	-	-	\bigcirc	-		Y*	XA32											
XA33	Female thread at the end	-	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	10, 1	-	-											
XA34	Female thread at the end	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	20, 30, 40	-	- K	K, T *										
XA35	Female thread at the end	\bigcirc	-	-	-	-	\bigcirc	-	\bigcirc	20, 30, 40	-	-	-	-	XA35								
XA36	Female thread at the end	-	-	\bigcirc	-	-	-	-	\bigcirc		-	-	J*	- ${ }^{-}$	X, Z *	XA36							
XA37	Stepped round shaft	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$	-	-	-	KT *	-	J^{*}	XA37						
XA38	Stepped round shaft	-	\bigcirc	-	\bigcirc	-	-	-	-		-	-	K*	-	-	-	K*						
XA39	Shaft through hole	-	\bigcirc	-	-	-	-	\bigcirc	-	20,30, 40	-	-	-	-	-	-	-						
XA40	Shaft through hole	-	-	-	\bigcirc	\bigcirc	-	-	-	10, 15,	-	-	-	-	-	-	-						
XA41	Shaft through hole	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	20, 30, 40	-	-	-	-	-	-	-						
XA42	Shaft through hole and female thread	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-	20,30,40	-	-	-	-	-	-	-						
XA43	Shaft through hole and female thread	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$	-	-	-	-	-	-	-						
XA44	Shaft through hole and female thread	\bigcirc	-	\bigcirc	-	-	\bigcirc	-	\bigcirc		-	-	-	-	-	-	-	XA38					
XA45	Middle-cut chamfer	\bigcirc	-	\bigcirc	-	\bigcirc	-	-	-		-	-	-	K*	-	J*	-	K*	XA39	XA40	XA41	XA45	
XA46	Middle-cut chamfer	-	\bigcirc	-	\bigcirc	-	-	-	-		-	-	K*	-	-	-	K*	-	-	-	-	K*	XA46
XA48	Change of long shaft length	\bigcirc	-	-	-	-	-	\bigcirc	-	20, 30, 40	-	Y^{*}	Y*	-	-	-	-	-	Y^{*}	-	-	-	-
XA49	Change of short shaft length	-	\bigcirc	-	-	-	-	\bigcirc	-		Y^{*}	-	-	-	-	-	-	-	Y^{*}	-	-	-	-
XA50	Change of double shaft length	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-		-	-	-	-	-	-	-	-	Y^{*}	-	-	-	-
XA51	Change of long shaft length	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$	-	-	-	K, T*	-	J*	-	K*	-	K, T*	-	-	K*
XA52	Change of short shaft length	-	\bigcirc	-	\bigcirc	-	-	-	-		-	-	K*	-	-	-	K*	-	-	K *	-	K, T*	-
XA53	Change of double shaft length	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	-		-	-	-	-	-	-	-	-	-	K *	-	-	-
XA54	Change of long shaft length	\bigcirc	-	-	-	-	\bigcirc	-	\bigcirc	20, 30, 40	-	-	-	X*	-	Z*	-	-	-	-	X, Z *	-	-
XA55	Change of short shaft length	-	\bigcirc	\bigcirc	-	-	-	-	\bigcirc		-	-	J*	-	Z*	-	J*	-	-	-	J, Z *	-	J*
XA56	Change of double shaft length	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc		-	-	-	-	-	-	-	-	-	-	Z*	-	-
XA57	Change of double shaft length	-	\bigcirc	\bigcirc	-	-	-	-	-	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$	-	-	-	-	-	-	-	-	-	-	J*	-	-
XA58	Reversed shatt, Change of double shatt length	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-		-	-	-	-	-	-	-	-	-	T*	J^{*}	-	-
XA59	Reversed shat, Change of double shat length	-	\bigcirc	-	-	-	\bigcirc	-	-	20, 30, 40	-	-	-	-	-	-	-	-	-	-	X*	-	-

Combination Chart of Made to Order

Chart 4. Combination between -XA \square and -XC \square (Made to Order/Details of -XC \square, refer to page 266.)

Symbol	Description	Applicable size	Combination
			XA31 to XA59
XC 7	Reversed shaft	$\begin{gathered} 10,15, \\ 20,30,40 \end{gathered}$	-
XC 8	Change of rotating range		\bigcirc
XC 9			\bigcirc
XC10			\bigcirc
XC11			\bigcirc
XC12	Change in angle adjustable range 0° to 100°		\bigcirc
XC13			\bigcirc
XC14			\bigcirc
XC15			\bigcirc
XC16	Change in angle adjustable range 90° to 190°		\bigcirc
XC17			\bigcirc
XC18	Change of rotating range	20, 30, 40	\bigcirc
XC19			\bigcirc
XC20	Change in angle adjustable range 90° to 190°		\bigcirc
XC21			\bigcirc
XC22	Without inner rubber bumper	10, 15	\bigcirc
XC30	Fluorine grease	10, 15, 20, 30, 40	\bigcirc
XC69	Fluororubber seal	10, 15, 20, 30, 40	\bigcirc

[^3]
Series CRQ2 (size: 10, 15, 20, 30, 40) Simple Specials:
 -XA31 to -XA59: Shaft Pattern Sequencing II

Shaft pattern sequencing is dealt with a simple made-to-order system. (Refer to front matter 33.)
Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II

Additional Reminders

1. Enter the dimensions within a range that allows for additional machining.
2. SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
3. The length of the unthreaded portion is 2 to 3 pitches.
4. Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{M} 3 \times 0.5, \mathrm{M} 4 \times 0.7, \mathrm{M} 5 \times 0.8$
M6 x 1
5. Enter the desired figures in the ${ }_{[--]}^{[-]}$portion of the diagram.
6. XA31 to XA59 are the standard products that have been additionally machined.
7. Chamfer face of the parts machining additionally is C 0.5

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L 1 is, as a rule,
twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft types: J, K, T

Symbol: A36

Machine female threads into the short shaft.

- The maximum dimension L 2 is, as a rule,
twice the thread size.
(Example) For M4: L2 = 8
- Applicable shaft types: J, Z

Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule,
twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft type: Y

Symbol: A34

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule,
twice the thread size.
(Example) For M5: L2 = 10
- Applicable shaft types: K, T, X

(mm)

Size	Q2
10	M3
15	M3, M4
20	M3, M4, M5, M6
30	M4, M5, M6, M8
40	M4, M5, M6, M8, M10

Symbol: A37

The long shaft can be further shortened by machining it into a stepped round shaft. (If shortening the shaft is not required, indicate "*" for dimension X.) (If not specifying dimension C , indicate "*" instead.

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.

Symbol: A32
Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule,
twice the thread size.
(Example) For M4: L2 = 8
- Applicable shaft type: Y

Symbol: A35

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule,
twice the thread size
(Example) For M3: L1 $=6$
- Applicable shaft types: X, Z

(mm)	
Size	Q1
$\mathbf{2 0}$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{3 0}$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{4 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8$

Symbol: A38

The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
(If not specifying dimension C 2 , indicate "*" instead.)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.

Compact Rotary Actuator Rack \& Pinion Style
 Series CRQ2

-XA31 to XA48

Shaft with through-hole
Minimum machining diameter for d 1 is 0.1 .

- Applicable shaft type: Y

Symbol: A45

The long shaft can be further shortened by machining a middle-cut chamfer into it.
(If shortening the shaft is not required, indicate "*"
for dimension X.)
(The position is that of the standard flat at the keyway portion.)

(mm)

Size	X	W1	L1 max	L3 max
$\mathbf{1 0}$	6 to 18	0.5 to 1.5	X -2	L1 -1
$\mathbf{1 5}$	6.5 to 20	0.5 to 1.5	X -2	L1 -1
$\mathbf{2 0}$	9.5 to 30	1 to 2	X -2.5	L1 -2
$\mathbf{3 0}$	11.5 to 32	1 to 2	X -3	L1 -2
$\mathbf{4 0}$	12.5 to 36	1 to 2	X -3	L1 -2

Symbol: $\mathbf{A 4 0}$

Shaft with through-hole
Minimum machining diameter for d 1 is 0.1 .

- Applicable shaft types: K, T

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes. - The maximum dimension L1 is, as a rule, twice the thread size.

- Applicable shaft types: K, T

Symbol: $\mathbf{A 4 6}$
The short shaft can be further shortened by machining a
middle-cut chamfer into it.
(If shortening the shaft is not required, indicate "*"
for dimension Y.)
(The position is that of the standard flat at the keyway portion.)

- Applicable shaft type: K

Symbol: A41

Shaft with through-hole
Minimum machining diameter for d1 is 0.1 .

- Applicable shaft types: J, X, Z

	(mm)
Size	d1
$\mathbf{1 0}$	$\varnothing 2$ to $\varnothing 3$
$\mathbf{1 5}$	$\varnothing 2$ to $\varnothing 4$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 5$
$\mathbf{3 0}$	$\varnothing 3$ to $\varnothing 7$
$\mathbf{4 0}$	$\varnothing 4$ to $\varnothing 8$

Series CRQ2

Shaft Pattern Sequencing II

Compact Rotary Actuator Rack \& Pinion Style Series CRQ2

-XA49 to XA59

CRB2
CBBU2
CRB1
MSU
CRJ
CRA1
CRO2
MSQ
MSZ
CRO2X
msax
MRQ

How to Order

Chart 5. Combination between -XC \square and -XC \square

Please consult with SMC for further information on specifications, dimensions and delivery.

Specifications

Applicable size	$10,15,20,30,40$
Applicable shaft type	S, W, X, T, J shaft

Size 10, 15

Size 20, 30, 40
(mm)

Size	\mathbf{M}	H				
$\mathbf{1 0}$	10	17	$(-)^{*}$			
$\mathbf{1 5}$	11	19	$(-)^{*}$			
$\mathbf{2 0}$	16.5	$28.5(19.5)^{*}$				
$\mathbf{3 0}$	20	30	$(22)^{*}$			
$\mathbf{4 0}$	22	34	$(25)^{*}$			
$*$ For X shaft						

Series $C R Q 2$ (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
-XC8 to -XC11, XC18/XC19: Change of Rotating Range
Please consult with SMC for further information on specifications, dimensions and delivery.

Additional Reminders

The rotation starting point shows the positions of one flat chamfering and the key groove when pressurized to the connecting port (B).

Series CRQ2 (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
-XC12 to XC17, XC20/XC21: Change of Angle Adjusting Range
(0° to $100^{\circ}, 90^{\circ}$ to 190°)
Please consult with SMC for further information on specifications, dimensions and delivery.

Symbol: $\mathbf{C 1 5}$
The rotation angle can be adjusted between 0° and 100°.

from the long shaft end.

Symbol: C20

The rotation angle can be adjusted between 90° and 190°

Size	Lmax
$\mathbf{1 0}$	15
$\mathbf{1 5}$	18
$\mathbf{2 0}$	24
$\mathbf{3 0}$	27
$\mathbf{4 0}$	31.5

The rotation angle can be adjusted between 0° and 100°.

Symbol: C21

The rotation angle can be adjusted between 90° and 190°

Series CRQ2 (Size: 10, 15, 20, 30, 40) Made to Order Specifications:
-XC22: Without Inner Rubber Bumper, -XC30: Fluorine Grease
-XC69: Fluororubber Seal, -X6: Shaft, Parallel Key Made of Stainless Steel Spec.
Please consult with SMC for further information on specifications, dimensions and delivery.

4

Without Inner Rubber Bumper -XC22

Specifications

Fluid	Air (Non-lube)
Applicable size	10,15
Max. operating pressure	0.7 MPa
Min. operating pressure	0.15 MPa
Port size	$\mathrm{M} 5 \times 0.8$
Rotation	80° to $100^{\circ}, 170^{\circ}$ to $190^{\circ}, 350^{\circ}$ to 370°
Applicable shaft type	$\mathrm{S}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}, \mathrm{J}, \mathrm{K}$
Auto switch	Mountable
*Refer to page 247 for other specifications.	

Refer to page 250 for other specifications.

Seal material is changed to fluororubber.

C RQ2B
CDRQ2B

Fluorine grease is used as lubricant oil in seal part of packing and inner wall of cylinder. (Not for low-speed specification.)

Shaft, Parallel Key Made of Stainless Steel Spec.

Stainless steel is used as a substitute material for standard parts when used under conditions with a possibility of oxidization or decay.

Fluid	Air (Non-lube)	
Applicable shaft type	$\mathrm{S}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}, \mathrm{J}, \mathrm{K}$	
Applicable size	$20,30,40$	
Max. operating pressure	1.0 MPa	
Min. operating pressure	0.1 MPa	
Cushion	80° to $100^{\circ}, 170^{\circ}$ to $190^{\circ}, 350^{\circ}$ to 370°	
Rotation range	Shaft, Parallel key	
Stainless steel part	Rc $1 / 8, \mathrm{G} 1 / 8$, NPT $1 / 8$, NPTF $1 / 8$	
Port size	Mountable	
Auto switch		

[^0]: * Auto switches are shipped together, (but not assembled).

[^1]: * A set includes all parts above.

[^2]: * AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

 S: Upper 90°, Middle 180°, Lower 360°
 ** In addition to Rc 1/8, G 1/8, NPT 1/8, NPTF $1 / 8$ are also available.

[^3]: * Chart 5. Refer to page 266 for combination available between -XC \square and -XC \square.

